منابع مشابه
Nonparametric Bayesian Data Analysis
We review the current state of nonparametric Bayesian inference. The discussion follows a list of important statistical inference problems, including density estimation, regression, survival analysis, hierarchical models and model validation. For each inference problem we review relevant nonparametric Bayesian models and approaches including Dirichlet process (DP) models and variations, Polya t...
متن کاملBayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملNonparametric Functional Data Analysis through Bayesian Density Estimation
In many modern experimental settings, observations are obtained in the form of functions, and interest focuses on inferences on a collection of such functions. Some examples are conductivitytemperature-depth (CTD) data in oceanography, dose-response models in epidemiology and time-course microarray experiments in biology and medicine. In this paper we propose a hierarchical model that allows us...
متن کاملInfinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis
Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g.missing data and binary data), and (iii) noisy observations and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Science
سال: 2004
ISSN: 0883-4237
DOI: 10.1214/088342304000000017